NAG Toolbox for MATLAB

f01rg

1 Purpose

f01rg reduces the complex m by n ($m \le n$) upper trapezoidal matrix A to upper triangular form by means of unitary transformations.

2 Syntax

[a, theta, ifail] =
$$fO1rg(a, 'm', m, 'n', n)$$

3 Description

The m by $n(m \le n)$ upper trapezoidal matrix A given by

$$A = (U \ X),$$

where U is an m by m upper triangular matrix, is factorized as

$$A = (R \quad 0)P^{\mathrm{H}}$$

where P is an n by n unitary matrix and R is an m by m upper triangular matrix.

P is given as a sequence of Householder transformation matrices

$$P = P_m \cdots P_2 P_1$$
,

the (m-k+1)th transformation matrix, P_k , being used to introduce zeros into the kth row of A. P_k has the form

$$P_k = \begin{pmatrix} I & 0 \\ 0 & T_k \end{pmatrix},$$

where

$$T_k = I - \gamma_k u_k u_k^H,$$

$$u_k = \begin{pmatrix} \zeta_k \\ 0 \\ z_k \\ cr \end{pmatrix},$$

 γ_k is a scalar for which $\text{Re}(\gamma_k) = 1.0$, ζ_k is a real scalar and z_k is an (n-m) element vector. γ_k , ζ_k and z_k are chosen to annihilate the elements of the kth row of X and to make the diagonal elements of R real.

The scalar γ_k and the vector u_k are returned in the kth element of the array **theta** and in the kth row of **a**, such that θ_k , given by

$$\theta_k = (\zeta_k, \operatorname{Im}(\gamma_k)),$$

is in $\mathbf{theta}(k)$ and the elements of z_k are in $\mathbf{a}(k, m+1), \dots, \mathbf{a}(k, n)$. The elements of R are returned in the upper triangular part of \mathbf{a} .

For further information on this factorization and its use see Section 6.5 of Golub and Van Loan 1996.

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Wilkinson J H 1965 The Algebraic Eigenvalue Problem Oxford University Press, Oxford

[NP3663/21] f01rg.1

f01rg NAG Toolbox Manual

5 Parameters

5.1 Compulsory Input Parameters

1: a(lda,*) - complex array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{m})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The leading m by n upper trapezoidal part of the array \mathbf{a} must contain the matrix to be factorized.

5.2 Optional Input Parameters

1: m - int32 scalar

m, the number of rows of the matrix A.

When $\mathbf{m} = 0$ then an immediate return is effected.

Constraint: $\mathbf{m} \geq 0$.

2: n - int32 scalar

Default: The second dimension of the array a.

n, the number of columns of the matrix A.

Constraint: $n \ge m$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda

5.4 Output Parameters

1: a(lda,*) - complex array

The first dimension of the array **a** must be at least $max(1, \mathbf{m})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The m by m upper triangular part of \mathbf{a} will contain the upper triangular matrix R, and the m by (n-m) upper trapezoidal part of \mathbf{a} will contain details of the factorization as described in Section 3.

2: theta(*) - complex array

Note: the dimension of the array **theta** must be at least $max(1, \mathbf{m})$.

theta(k) contains the scalar θ_k for the (m-k+1)th transformation. If $T_k = I$ then **theta**(k) = 0.0; if

$$T_k = \begin{pmatrix} \alpha & 0 \\ 0 & I \end{pmatrix}, \quad \operatorname{Re}(\alpha) < 0.0$$

then $\mathbf{theta}(k) = \alpha$, otherwise $\mathbf{theta}(k)$ contains θ_k as described in Section 3 and $\mathrm{Re}(\theta_k)$ is always in the range $\left(1.0, \sqrt{2.0}\right)$.

3: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

f01rg.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$\begin{aligned} & \textbf{ifail} = -1 \\ & \text{On entry, } & \textbf{m} < 0, \\ & \text{or} & \textbf{n} < \textbf{m}, \\ & \text{or} & \textbf{Ida} < \textbf{m}. \end{aligned}$$

7 Accuracy

The computed factors R and P satisfy the relation

$$(R \quad 0)P^{\mathrm{H}} = A + E,$$

where

$$||E|| \le c\epsilon ||A||,$$

 ϵ is the *machine precision* (see x02aj), c is a modest function of m and n, and $\|.\|$ denotes the spectral (two) norm.

8 Further Comments

The approximate number of floating-point operations is given by $8m^2(n-m)$.

9 Example

```
[complex(2.4, +0), complex(0.8, +0.8), complex(-1.4,
complex(3, -1);
     complex(0, +0), complex(1.6, +0), complex(0.8, +0.3), complex(0.4,
    complex(0, +0), complex(0, +0), complex(1, +0), complex(2, -1)];
[aOut, theta, ifail] = f01rg(a)
aOut =
  -3.5808
                         0.2533 - 0.9059i -2.2862 - 0.6532i
                                                                0.5120 +
0.2601i
                       -1.7369
                                            -0.4491 - 0.6940i -0.2544 -
0.1187i
                                           -2.4495
                                                                0.6880 +
0.3440i
theta =
   1.2924
   1.3861
    1.1867
ifail =
          0
```

[NP3663/21] f01rg.3 (last)